ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.ЛОМОНОСОВА» ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА МОЛЕКУЛЯРНЫХ ПРОЦЕССОВ И ЭКСТРЕМАЛЬНЫХ СОСТОЯНИЙ ВЕШЕСТВА

МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ

## Влияние добавок метана на процесс сажеобразования при пиролизе ацетилена за ударными волнами

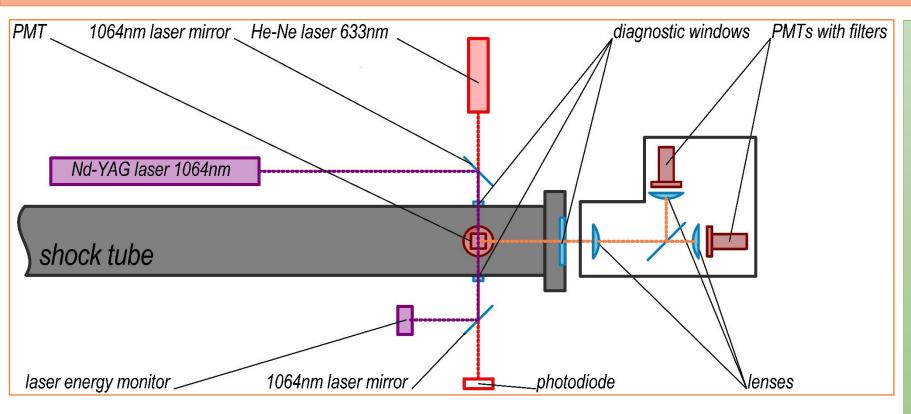
Выполнил студент 204М группы: Селяков Иван Николаевич

Научный руководитель: профессор, д.ф.-м.н. Уваров Александр Викторович

## АКТУАЛЬНОСТЬ РАБОТЫ

 Проблема выброса сажи и СО при неполном сгорании углеводородов

Недостаток данных о процессе сажеобразования при пиролизе и горении ацетилена


# ПОСТАНОВКА ЗАДАЧИ

• Проведение экспериментов на ударной трубе по синтезу частиц сажи при пиролизе ацетилена за ударными волнами с добавками метана

• Анализ влияния добавки на процесс сажеобразования

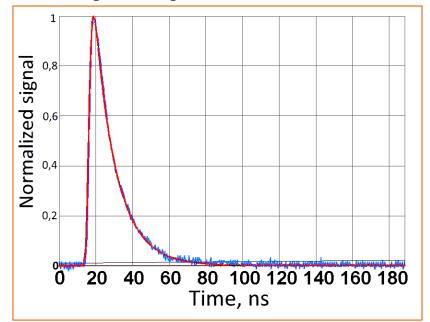
• Анализ причин обнаруженных эффектов, детальное рассмотрение кинетики сажеобразования на начальных этапах

## ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА



- Синтез частиц пиролиз 2 %C<sub>2</sub>H<sub>2</sub> + Ar с добавлением 1% CH<sub>4</sub> за ОУВ в ударной трубе
- Параметры за ОУВ: P<sub>5</sub>=4-5 бар; T<sub>5</sub>=1600-2300 К

- Источник нагрева частиц - Nd-YAG лазер 1064 нм
  - Длительность лазерного импульса 10 нс
  - Плотность энергии
    0,3-0,4 Дж/см²
  - Светофильтры: 488 нм, 610 нм, 770 нм, 450 нм
- **Экстинкция:** He-Ne лазер 633 нм


## МЕТОД ЛАЗЕРНО-ИНДУЦИРОВАННОЙ ИНКАНДЕСЦЕНЦИИ

### Уравнения баланса энергии и массы

$$\frac{dm_{p}}{dt} = -J_{evap}$$

$$\frac{d(m_p c_p T_p)}{dt} = Q_{abs} - Q_{rad} - Q_{cond} - Q_{evap}$$

#### Аппроксимированный ЛИИ сигнал

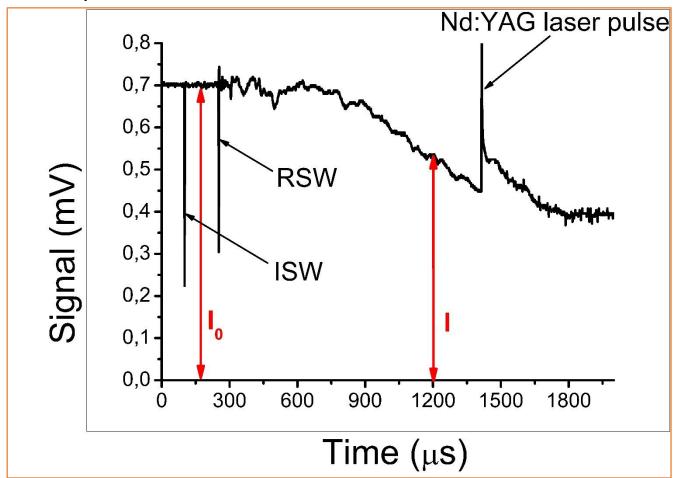


#### ИЗМЕНЕНИЕ МАССЫ

• Сублимация

#### НАГРЕВ

• Лазерное излучение


### ОХЛАЖДЕНИЕ

- Кондуктивный теплообмен
- Сублимация
- Излучение

Уравнения решаются относительно **температуры наночастиц**, по которой рассчитывается суммарное интегральное излучение от ансамбля частиц. Размер варьируется до удовлетворительной аппроксимации экспериментальной кривой расчетной кривой.

# МЕТОД ЛАЗЕРНОЙ ЭКСТИНКЦИИ

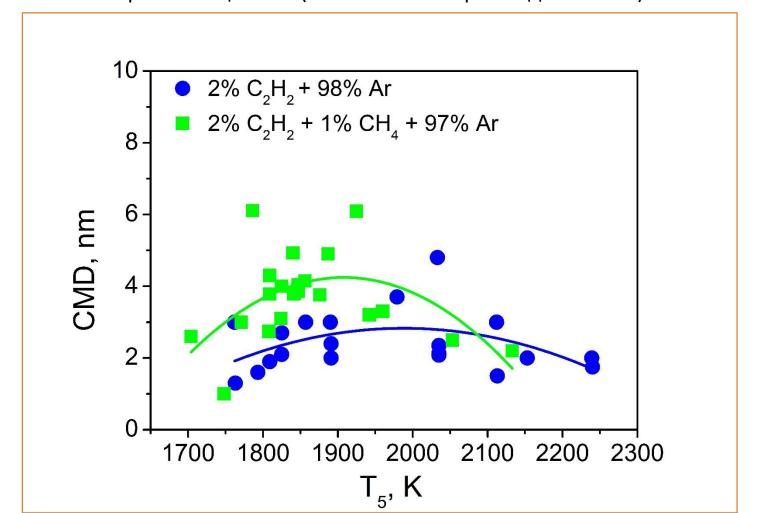
### Экспериментальный сигнал



ISW – падающая ударная волна RSW – отраженная ударная волна

Объемная доля конденсированной фазы:

$$f_{v} = \frac{\ln(\frac{I}{I_{0}})\lambda}{-6\pi E(m)l}$$

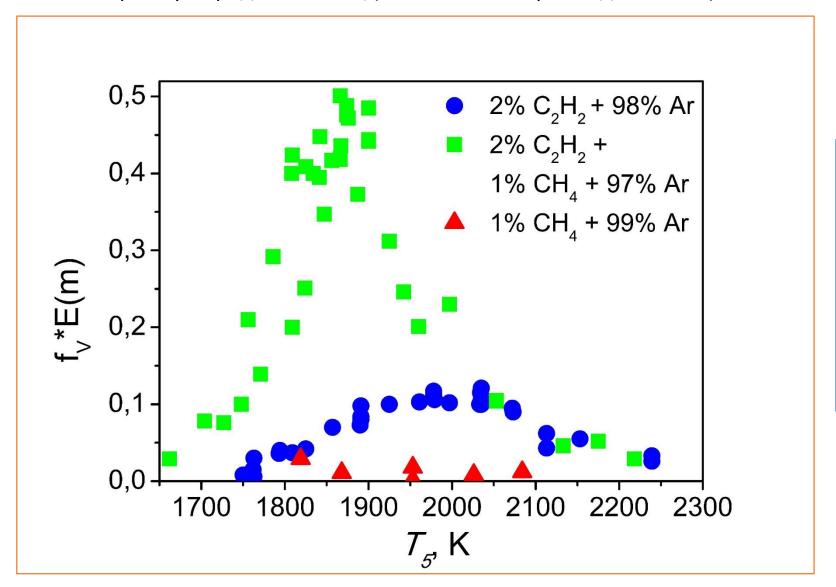

 $\lambda$  – длина волны лазерного излучения

I – длина оптического пути

E(m) - функция, зависящая от коэффициента преломления света в среде m = n + ik на данной длине волны

# РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ. ЛАЗЕРНО-ИНДУЦИРОВАННАЯ ИНКАНДЕСЦЕНЦИЯ

Температурная зависимость размера углеродных частиц, измеренного при помощи ЛИИ (950мкс после прохождения ОУВ)

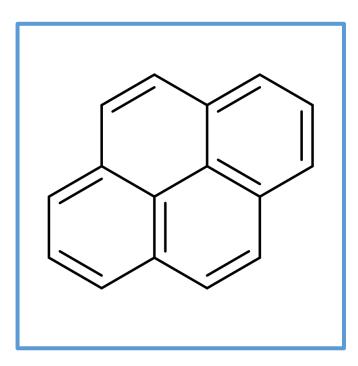



При добавлении метана максимальный размер частиц смещается в сторону низких температур. Заметно повышение размера частиц.

CMD – средний расчетный диаметр частиц Точки - экспериментальные данные Кривые - нелинейная аппроксимация

## РЕЗУЛЬТАТЫ (ЛАЗЕРНАЯ ЭКСТИНКЦИЯ)

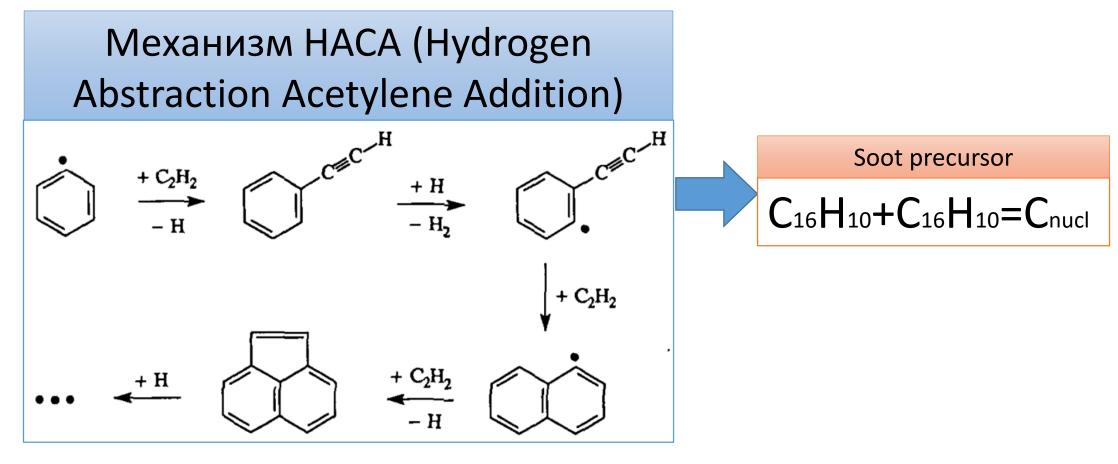
Температурная зависимость объемной доли конденсированной фазы углеродных частиц (950мкс после прохождения ОУВ)




При добавлении метана максимум объемной доли конденсированной фазы частиц смещается в сторону низких температур. Заметно сильное объемной повышение ДОЛИ конденсированной фазы при добавлении метана, в то время как в чистом метане при данных условиях выход сажи невелик.

• Модель Френклаха для сажеобразования

[Appel, Bockhorn, Frenklach., Combust. Flame p.121-136 (2000)]


• Пакет Chemkin для решения задач химической кинетики

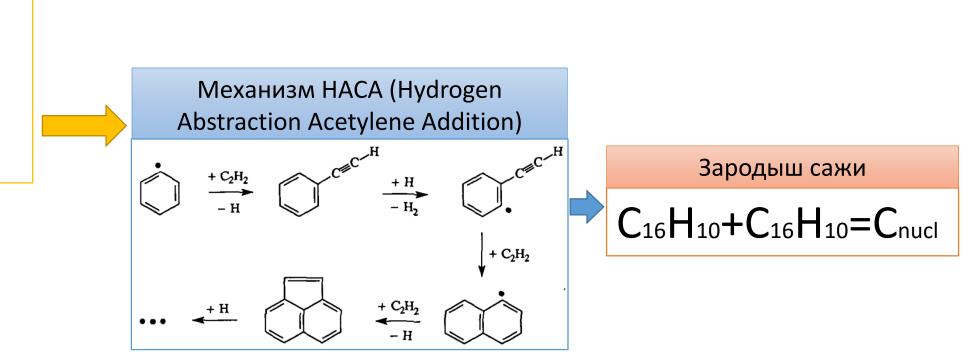


Зародыш сажевой частицы — рекомбинориванные молекулы пирена

 $C_{16}H_{10}+C_{16}H_{10}=C_{nucl}$ 

Молекула пирена  $C_{16}H_{10}$ 

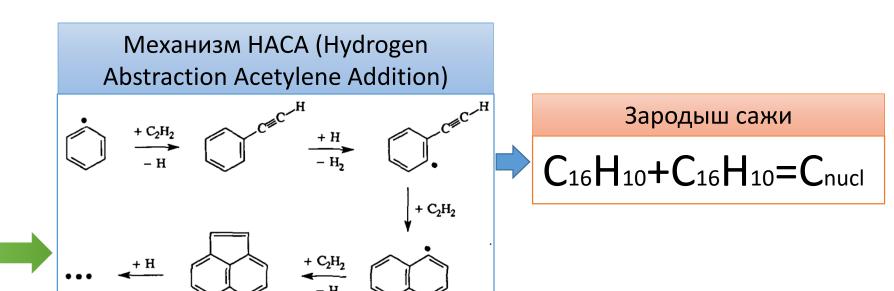



Буквально "отрыв водорода, присоединение

10

### $2\% C_2H_2+Ar$

 $C_{2}H_{2} + C_{2}H \leftrightarrow C_{4}H_{3}$   $C_{2}H_{2} + C_{2}H_{2} \leftrightarrow C_{4}H_{3} + H$   $C_{4}H_{3} + H \leftrightarrow C_{4}H_{4}$   $C_{4}H_{4} + C_{2}H_{2} \leftrightarrow C_{6}H_{5} + H$   $C_{4}H_{3} + C_{2}H_{2} \leftrightarrow C_{6}H_{5}$   $C_{6}H_{5} + H \leftrightarrow C_{6}H_{6}$ 

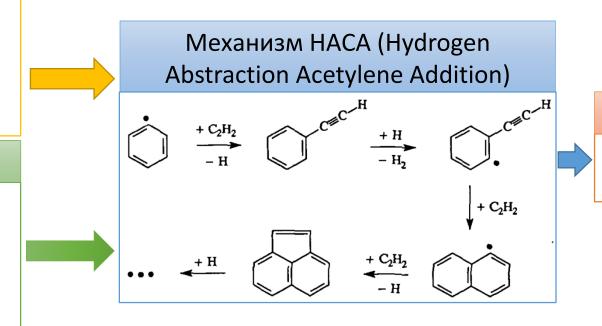

цепочка реакций при пиролизе ацетилена без добавки



цепочка реакций при пиролизе ацетилена с добавкой метана

### 2% C<sub>2</sub>H<sub>2</sub>+1% CH<sub>4</sub>+Ar

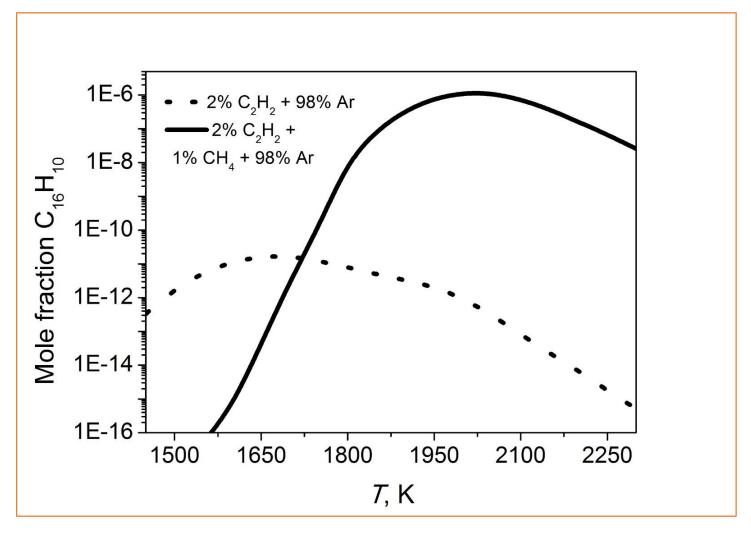
 $CH_4 + H \leftrightarrow CH_3 + H_2$   $CH_3 + H \leftrightarrow CH_2^* + H_2$   $CH_3 + CH_3 \leftrightarrow CH_2^* + CH_4$   $CH_2^* + Ar \leftrightarrow CH_2 + Ar$   $CH_3 + CH_3 \leftrightarrow CH_2 + CH_4$   $CH_3 + C_2H_2 \leftrightarrow C_3H_4 + H$   $C_3H_4 + H \leftrightarrow C_3H_3 + H_2$   $CH_3 + C_2H \leftrightarrow C_3H_3 + H$   $CH_2 + C_2H_2 \leftrightarrow C_3H_3 + H$   $CH_2 + C_2H_2 \leftrightarrow C_3H_3 + H$   $CH_2 + C_2H_2 \leftrightarrow C_3H_3 + H$   $CH_3 + C_3H_3 \leftrightarrow C_6H_6$   $C_6H_6 \leftrightarrow C_6H_5 + H$ 




### $2\% C_2H_2+Ar$

 $C_{2}H_{2} + C_{2}H \longleftrightarrow C_{4}H_{3}$   $C_{2}H_{2} + C_{2}H_{2} \longleftrightarrow C_{4}H_{3} + H$   $C_{4}H_{3} + H \longleftrightarrow C_{4}H_{4}$   $C_{4}H_{4} + C_{2}H_{2} \longleftrightarrow C_{6}H_{5} + H$   $C_{4}H_{3} + C_{2}H_{2} \longleftrightarrow C_{6}H_{5}$   $C_{6}H_{5} + H \longleftrightarrow C_{6}H_{6}$ 

### 2% C<sub>2</sub>H<sub>2</sub>+1% CH<sub>4</sub>+Ar


 $CH_4 + H \leftrightarrow CH_3 + H_2$   $CH_3 + H \leftrightarrow CH_2^* + H_2$   $CH_3 + CH_3 \leftrightarrow CH_2^* + CH_4$   $CH_2^* + Ar \leftrightarrow CH_2 + Ar$   $CH_3 + CH_3 \leftrightarrow CH_2 + CH_4$   $CH_3 + C_2H_2 \leftrightarrow C_3H_4 + H$   $C_3H_4 + H \leftrightarrow C_3H_3 + H_2$   $CH_3 + C_2H \leftrightarrow C_3H_3 + H$   $CH_2 + C_2H_2 \leftrightarrow C_3H_3 + H$   $CH_2 + C_2H_2 \leftrightarrow C_3H_3 + H$   $CH_2 + C_2H_2 \leftrightarrow C_3H_3 + H$   $CH_3 + C_3H_3 \leftrightarrow C_6H_6$   $C_6H_6 \leftrightarrow C_6H_5 + H$ 



Зародыш сажи

 $C_{16}H_{10}+C_{16}H_{10}=C_{nucl}$ 

Мольная доля пирена в зависимости от температуры для 2%  $C_2H_2$  и смеси 2%  $C_2H_2 + 1\%$   $CH_4$ , расчет по модели Френклаха



Видно повышение мольной доли пирена при добавлении метана.

## ВЫВОДЫ

- ✓ Экспериментально получены температурные зависимости размеров частиц и объемной доли конденсированной фазы частиц сажи
- ✓ Проведен анализ кинетических путей образования зародышей наночастиц сажи при пиролизе ацетилена с добавкой метана.
- ✓ Обнаружено существенное увеличение выхода сажи при пиролизе ацетилена в присутствии радикалов СН<sub>3</sub> и СН<sub>2</sub> за счет включения нового канала образования первого ароматического кольца.

### ПУБЛИКАЦИИ

Alexander Eremin, Ekaterina Mikheyeva, Ivan Selyakov: Influence of methane addition on soot formation in pyrolysis of acetylene (Combustion and Flame 193 (2018) 83–91)

A V Drakon, A V Eremin, E V Gurentsov, E Yu Mikheyeva, S A Musikhin and I N Selyakov: Promotion of methane ignition by the laser heating of suspended nanoparticles (J. Phys.: Conf. Ser. 946 (2018) 012064)

### ВЫСТУПЛЕНИЯ НА КОНФЕРЕНЦИЯХ

XXXI International Conference on Equations of State for Matter, 1-6 Марта, 2016 (стендовый доклад);

III Всероссийская молодежная конференция "Успехи химической физики", 3-7 июля 2016 (устный доклад);

XXXII International Conference on Interaction of Intense Energy Fluxes with Matter, Elbrus 2017 (стендовый доклад);